320 research outputs found

    All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering

    Get PDF
    Einstein-Podolsky-Rosen steering is a form of quantum nonlocality intermediate between entanglement and Bell nonlocality. Although Schr\"odinger already mooted the idea in 1935, steering still defies a complete understanding. In analogy to "all-versus-nothing" proofs of Bell nonlocality, here we present a proof of steering without inequalities rendering the detection of correlations leading to a violation of steering inequalities unnecessary. We show that, given any two-qubit entangled state, the existence of certain projective measurement by Alice so that Bob's normalized conditional states can be regarded as two different pure states provides a criterion for Alice-to-Bob steerability. A steering inequality equivalent to the all-versus-nothing proof is also obtained. Our result clearly demonstrates that there exist many quantum states which do not violate any previously known steering inequality but are indeed steerable. Our method offers advantages over the existing methods for experimentally testing steerability, and sheds new light on the asymmetric steering problem.Comment: 7 pages, 2 figures. Accepted in Sci. Re

    Testing foundations of quantum mechanics with photons

    Full text link
    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review articl

    Pig-to-Nonhuman Primates Pancreatic Islet Xenotransplantation: An Overview

    Get PDF
    The therapy of type 1 diabetes is an open challenging problem. The restoration of normoglycemia and insulin independence in immunosuppressed type 1 diabetic recipients of islet allotransplantation has shown the potential of a cell-based diabetes therapy. Even if successful, this approach poses a problem of scarce tissue supply. Xenotransplantation can be the answer to this limited donor availability and, among possible candidate tissues for xenotransplantation, porcine islets are the closest to a future clinical application. Xenotransplantation, with pigs as donors, offers the possibility of using healthy, living, and genetically modified islets from pathogen-free animals available in unlimited number of islets. Several studies in the pig-to-nonhuman primate model demonstrated the feasibility of successful preclinical islet xenotransplantation and have provided insights into the critical events and possible mechanisms of immune recognition and rejection of xenogeneic islet grafts. Particularly promising results in the achievement of prolonged insulin independence were obtained with newly developed, genetically modified pigs islets able to produce immunoregulatory products, using different implantation sites, and new immunotherapeutic strategies. Nonetheless, further efforts are needed to generate additional safety and efficacy data in nonhuman primate models to safely translate these findings into the clinic

    System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization

    Get PDF
    A complex system for control of swarms of micro aerial vehicles (MAV), in literature also called as unmanned aerial vehicles (UAV) or unmanned aerial systems (UAS), stabilized via an onboard visual relative localization is described in this paper. The main purpose of this work is to verify the possibility of self-stabilization of multi-MAV groups without an external global positioning system. This approach enables the deployment of MAV swarms outside laboratory conditions, and it may be considered an enabling technique for utilizing fleets of MAVs in real-world scenarios. The proposed visual-based stabilization approach has been designed for numerous different multi-UAV robotic applications (leader-follower UAV formation stabilization, UAV swarm stabilization and deployment in surveillance scenarios, cooperative UAV sensory measurement) in this paper. Deployment of the system in real-world scenarios truthfully verifies its operational constraints, given by limited onboard sensing suites and processing capabilities. The performance of the presented approach (MAV control, motion planning, MAV stabilization, and trajectory planning) in multi-MAV applications has been validated by experimental results in indoor as well as in challenging outdoor environments (e.g., in windy conditions and in a former pit mine)

    Signalling plasticity and energy saving in a tropical bushcricket

    Get PDF
    Males of the tropical bushcricket Mecopoda elongata synchronize their acoustic advertisement signals (chirps) in interactions with other males. However, synchrony is not perfect and distinct leader and follower roles are often maintained. In entrainment experiments in which conspecific signals were presented at various rates, chirps displayed as follower showed notable signal plasticity. Follower chirps were shortened by reducing the number and duration of syllables, especially those of low and medium amplitude. The degree of shortening depended on the time delay between leader and follower signals and the sound level of the entraining stimulus. The same signal plasticity was evident in male duets, with the effect that the last syllables of highest amplitude overlapped more strongly. Respiratory measurements showed that solo singing males producing higher chirp rates suffered from higher metabolic costs compared to males singing at lower rates. In contrast, respiratory rate was rather constant during a synchronous entrainment to a conspecific signal repeated at various rates. This allowed males to maintain a steady duty cycle, associated with a constant metabolic rate. Results are discussed with respect to the preference for leader signals in females and the possible benefits males may gain by overlapping their follower signals in a chorus

    Satellites around Milky Way Analogs: Tension in the Number and Fraction of Quiescent Satellites Seen in Observations versus Simulations

    Get PDF
    We compare the star-forming properties of satellites around Milky Way (MW) analogs from the Stage II release of the Satellites Around Galactic Analogs Survey (SAGA-ii) to those from the APOSTLE and Auriga cosmological zoom-in simulation suites. We use archival GALEX UV imaging as a star formation indicator for the SAGA-ii sample and derive star formation rates (SFRs) to compare with those from APOSTLE and Auriga. We compare our detection rates from the NUV and FUV bands to the SAGA-ii Hα detections and find that they are broadly consistent with over 85% of observed satellites detected in all three tracers. We apply the same spatial selection criteria used around SAGA-ii hosts to select satellites around the MW-like hosts in APOSTLE and Auriga. We find very good overall agreement in the derived SFRs for the star-forming satellites as well as the number of star-forming satellites per host in observed and simulated samples. However, the number and fraction of quenched satellites in the SAGA-ii sample are significantly lower than those in APOSTLE and Auriga below a stellar mass of M ∗ ∼ 108 M o˙, even when the SAGA-ii incompleteness and interloper corrections are included. This discrepancy is robust with respect to the resolution of the simulations and persists when alternative star formation tracers are employed. We posit that this disagreement is not readily explained by vagaries in the observed or simulated samples considered here, suggesting a genuine discrepancy that may inform the physics of satellite populations around MW analogs

    A mathematical model of the human metabolic system and metabolic flexibility

    Get PDF
    In healthy subjects some tissues in the human body display metabolic flexibility, by this we mean the ability for the tissue to switch its fuel source between predominantly carbohydrates in the post prandial state and predominantly fats in the fasted state. Many of the pathways involved with human metabolism are controlled by insulin, and insulin- resistant states such as obesity and type-2 diabetes are characterised by a loss or impairment of metabolic flexibility. In this paper we derive a system of 12 first-order coupled differential equations that describe the transport between and storage in different tissues of the human body. We find steady state solutions to these equations and use these results to nondimensionalise the model. We then solve the model numerically to simulate a healthy balanced meal and a high fat meal and we discuss and compare these results. Our numerical results show good agreement with experimental data where we have data available to us and the results show behaviour that agrees with intuition where we currently have no data with which to compare

    Examining the strategy development process through the lens of complex adaptive systems theory

    Get PDF
    The development of strategy remains a debate for academics and a concern for practitioners. Published research has focused on producing models for strategy development and on studying how strategy is developed in organisations. The Operational Research literature has highlighted the importance of considering complexity within strategic decision making; but little has been done to link strategy development with complexity theories, despite organisations and organisational environments becoming increasingly more complex. We review the dominant streams of strategy development and complexity theories. Our theoretical investigation results in the first conceptual framework which links an established Strategic Operational Research model, the Strategy Development Process model, with complexity via Complex Adaptive Systems theory. We present preliminary findings from the use of this conceptual framework applied to a longitudinal, in-depth case study, to demonstrate the advantages of using this integrated conceptual model. Our research shows that the conceptual model proposed provides rich data and allows for a more holistic examination of the strategy development process. © 2012 Operational Research Society Ltd. All rights reserved

    A model of open-loop control of equilibrium position and stiffness of the human elbow joint

    Get PDF
    According to the equilibrium point theory, the control of posture and movement involves the setting of equilibrium joint positions (EP) and the independent modulation of stiffness. One model of EP control, the α-model, posits that stable EPs and stiffness are set open-loop, i.e. without the aid of feedback. The purpose of the present study was to explore for the elbow joint the range over which stable EPs can be set open-loop and to investigate the effect of co-contraction on intrinsic low-frequency elbow joint stiffness (
    corecore